Dedicated to
my sons Joshua and Jeremiah,
who have given direction,
meaning and purpose to my life.
– DW

To my father, Roscoe V. Stuber, MD,
who taught me what it means to be a physician.
– MS

Cover art:
Death and Life by Gustav Klimt (1910/15)
Oil on canvas, 180.5 × 200.5 cm. Leopold Museum, Vienna, Austria. Used by permission.

Gustav Klimt was one of the most remarkable artists of the 20th century. This particular *fin de siècle* painting, one of the editors’ favorites, was awarded first prize in a world exhibition held in Rome in 1911. It is allegorical and depicts the human condition in a direct and dramatic way. One sees all the major facets of life clustered on the right side of the canvas – most notably birth, love, sex, sorrow, and suffering – and Klimt uses the left side of the canvas to remind us that death is always waiting at the end of the ride. The viewer is reminded of William James’ poignant comment, “Life is a banquet, but there is always a skeleton staring in at the window.” Most physicians will deal with many of the themes represented in Klimt’s painting during their personal and professional lives.
BEHAVIOR AND MEDICINE

FIFTH EDITION

Editors

DANNY WEDDING, PhD, MPH
Associate Dean and Professor of Psychology
California School of Professional Psychology
Alliant International University
San Francisco, CA

MARGARET L. STUBER, MD
Jane and Marc Nathanson Professor of Psychiatry
Semel Institute for Neuroscience and Human Behavior
David Geffen School of Medicine
University of California – Los Angeles
Los Angeles, CA

HOGREFE
Foreword

In medical education we spend a disproportionate amount of time teaching the biomedical model at the expense of other important areas – areas that contribute to both the art and science of medicine. There is no specialty in medicine that is untouched by the behavioral and social sciences, dimensions that regularly challenge our way of thinking about medicine and disease. While it is attractive, and in some ways comforting, to many students to be able to reduce disease to a series of biomedical events, this is not currently possible and it may never be possible. In fact, health care without the richness of the behavioral perspective is not medicine at all.

Once a cancer, a mental illness, or even diabetes has been diagnosed, the power of our treatments to alter the outcome is influenced by a mélange of behavioral and social factors. A disease, or more accurately an illness, in one culture, place, and time may be perceived as completely normal in a different setting. People suffer “illnesses” that are life events, while doctors diagnose and treat “diseases” that are pathological events. Illnesses are experiences filtered through a myriad of social, economic, cultural, and educational lenses that each impact normal function. Diseases are pathological abnormalities of the normal function and structure of organs and cells. Biomedical science places a large emphasis on disease, while medicine is the blending of treating both illness and disease – requiring mastery of both art and science.

The practice of medicine involves far more than an understanding of scientific information and facts. It is also about culture – not only the culture of our patients but the culture of our profession: “the culture of medicine.” Medicine is certainly its own culture with a requisite body of knowledge shared by a large group, a common set of beliefs and values that are accepted with great thought and passed along from generation to generation: special symbols, rituals, meanings, hierarchies, roles, special possessions, unique aspects of language, and behaviors derived from social learning. The culture of modern medicine influences how we think about essential human experiences including race, gender identity, conception, human development, sickness and disease, social responsibility, aging, dying, and spirituality. At times our medical thinking does not mesh with that of our patients. Conditions like menopause, Asperger’s syndrome, AIDS, and suicide can have profoundly different cultural meanings. Medicine is reductionistic. To many these diseases are understood as disorders of hormones, neurochemicals, and viral agents, while others understand them as disorders of spiritual influences, behaviors, and complex interplays between biology, environment, and culture.

While humans share many biological similarities, health care is an area in which understanding human differences is essential. We often do not understand why some groups have a disproportionate burden of illness, but it is likely that genetics, environment, and behavior interact to create this havoc. Add to this social stigma, physical disability, access to health care, and economic deprivation, and you can partially explain the large disparities in US health care. Only with an understanding of these social and behavioral issues can we provide appropriate medical care.

These are not easy times to practice medicine or to learn medicine. There are some who brag that America has the best health care system in the world. I think the data argue otherwise. A quick look at any newspaper reminds us that far too many of us have no access to health care, much of the health care we do provide is not evidence-based and of poor quality, the rate of medical errors is unacceptably high, and the chance of surviving, say, a cancer depends as much on your skin color and ethnicity as it does on your health insurance. Despite spending more per person on health care than any other nation on the planet we are ranked in the middle of all nations in terms of major indicators of health status (longevity, infant mortality, immunization rates, etc.). There are regions such as South Central Los Angeles, Oakland, Detroit, and the Bronx, where men have shorter life expectancies than those in Hanoi or Cape Town. A baby born in Sacramento is now less likely to survive than one born in Beijing or Havana. Access to our system of health care is not fair—in 2010 we still had 45 million uninsured and 23 million underinsured, and most of these people were working Americans. All this might be fine if Americans were satisfied with the quality and access to their health care, but we are not – at least not compared to people living in the United Kingdom, Japan, France, or Germany. So there is an urgent need for change that will address these aspects of health and will alter both the practice of medicine and medical education itself.

Biomedicine, behavior, and social factors (social, cultural, political, and economic forces) are inextricably linked to health outcomes. Behavior & Medicine does a wonderful job of introducing the health sciences student to this complex interface. It is only through understanding these critical interplays that we can open our minds and design interventions for patients that are achievable and acceptable and truly act in our patients’ best interest. According to Piaget we learn through two processes, namely, assimilation (importing new information into an existing belief system) and accommodation (changing our belief system based on new information). For many, this book offers the
chance to understand a more complete picture of the art and science of medicine and to develop a more inclusive belief system that will lead to a more meaningful practice of medicine and permit better patient care.

Students will likely be frustrated that in much of clinical care there is no easy answer. When a person presents with a complex illness linked to a dysfunctional family, deep-rooted cultural beliefs, destructive behaviors, and limited access to health care, there are often no MRI scans or lab tests that offer a quick diagnosis. Diagnosis requires a good fund of knowledge, careful listening (both for what is spoken and also for what is not spoken), and a health-care team that works well together. To properly care for patients there will need to be an understanding of culture, religion, economics, power, education, the human spirit, psychology, and biomedicine. *Behavior & Medicine* begins the process of helping us to understand these important linkages between behavior and disease.

Michael Wilkes, MD, PhD
Professor of Medicine
University of California, Davis
Sacramento, CA
Behavior, a living organism’s actions in response to stimuli, is the cause, the goal, and the reason for everything. Our DNA, RNA, proteins, cells, organs, systems, memories, and experiences, in the context of our surroundings, cause our actions that sustain and reproduce ourselves, help sustain our fellow humans and—if we humans behave especially well—other species. When our brains (the organs of our behaviors) die, we are said to die, even while our hearts beat and machines breathe for us.

Our behaviors determine whether we are good doctors. Our professional behaviors are responses to the behaviors of our patients, fellow professionals, and others with whom we work. Our behaviors extend and shorten our lives—sometimes dramatically. Our symptoms and often our signs of illness are expressed by behaviors. Our personalities and our individuality are reflected as behaviors. The objectives and competencies of our medical educations are themselves behaviors. In its 2004 report, *Improving Medical Education: Enhancing the Behavioral and Social Science Content of Medical School Curricula*, the Institute of Medicine (IOM) of the National Academy of Sciences states unequivocally that “approximately half of all causes of morbidity and mortality in the United States are linked to behavioral and social factors.”

So behavior is pretty important. And everyone who practices medicine must know a ton about it; be competent in it; and even be “sort of” expert in it. Personally, behavior is the only thing that interests me, and every doctor, medical student, and smart person I have ever met is interested in it.

So it is always a joy when a splendid book on behavior is published, in this instance the fifth edition of Danny Wedding and Margi Stuber’s *Behavior and Medicine*. The chapters in the book are a response to the IOM and the Accreditation Council of Graduate Medical Education (ACGME) recommendation that “medical students should be provided with an integrated curriculum in the behavioral and social sciences throughout the 4 years of medical school” and the recommendation that medical students demonstrate competency in the following domains:

- Mind-body interactions in health and disease
- Patient behavior
- Physician role and behavior
- Physician-patient interactions
- Social and cultural issues in health care, and
- Health policy and economics

The IOM and ACGME also recommends that the U.S. Medical Licensing Examination (USMLE) should include increased behavioral and social science content on its certifying examinations.

Like its predecessors, this edition is written crystal clearly, and is a very enjoyable, up-to-date “read” filled with wise and crucial information. Each of its chapters is theoretically sound, clinically precious, and unusually helpful in preparing for clinical practice and USMLE Step 1 and Step 2 examinations. As in the previous editions, the literary quotes and artwork give the book a unique texture. All the authors are experts and fine writers.

Frederick S. Sierles, MD
Professor and Director of Medical Student Education in Psychiatry and Behavioral Sciences and inaugural member, Master Teacher’s Guild, Rosalind Franklin University of Medicine and Science North Chicago, IL
We were pleased and gratified with the enthusiastic reception of the last edition of *Behavior and Medicine*. The book has now been read by tens of thousands of medical students, and most of these former students are now practicing medicine. One likes to think that the clinical practice of these students will be influenced by the book, and that patient care will be a little more humane, a little more gentle, and perhaps a little more effective because some of the ideas in *Behavior and Medicine* took root.

The two editors share a passion for convincing medical students that understanding human behavior is absolutely critical to their future practice, and we have been happy and congenial collaborators.

Hogrefe publishes both in the U.S. and internationally, and they are able to market *Behavior and Medicine* to relevant groups of students around the world. Many medical schools in non-English speaking countries use English language texts, and *all* physicians need to be conversant with the basic principles of behavioral science covered in *Behavior and Medicine*. We’re proud that *Behavior and Medicine* has been used to educate medical students in Canada, Great Britain, Australia, New Zealand, South Africa, Thailand, Scandinavia, and dozens of other countries as well as the original target group—medical students preparing to take the United States Medical Licensing Examination.

We have been pleased with the warm reception *Behavior and Medicine* has received in a number of health professions outside of medicine. Although the book clearly targets medical students and has the avowed aim of helping these students pass the behavioral science portion of the USMLE, professors in training programs in nursing, dentistry, public health, social work, and psychology have adopted the book and found its content germane to their students. In addition, a number of physician assistant training programs have used *Behavior and Medicine* as a core text.

All of the sample questions at the end of the book, designed to help students prepare for the Behavioral Science questions on the National Boards, have been updated and revised to reflect the current USMLE format. Dr. Stuber has spent hundreds of hours preparing these questions, and we believe they offer a useful preview of the kind of behavioral science questions that will be encountered on the USMLE. The student who reads the book and reviews the sample questions should have little trouble with the Behavioral Science section of the USMLE examination; in fact, one of our most gratifying personal rewards as editors and medical educators has been the numerous students who have reported that they “aced” the Behavioral Science section of the USMLE after studying *Behavior and Medicine*.

We have highlighted all key words, names, and phrases by putting them in bold type, and we have emphasized all the key concepts that we think are likely to show up on the USMLE by putting them in italics. Thus, a student who does not have time to read each chapter (and, regrettably, this may include all too many medical students) can still prepare for class examinations and the Behavioral Science portions of the USMLE by reviewing the bold and italicized text. This is not an ideal situation, but we have taught medical students long enough to realize it is both pragmatic and necessary.

We have worked hard to make this new edition *clinically relevant*, and almost all chapters include a Case Study illustrating the application of the principles being discussed. Every case draws on the clinical experience of the authors and illustrates how the principles of the chapter can be applied in a clinical setting.

Multiple interlocking themes link each chapter in the fifth edition. One theme is the simultaneous *poignancy and beauty of the transitions of life*. As children we were filled with awe and fascination; later we worked through the turmoil of adolescence; still later we each trembled at the touch of a lover. Some of us will be fortunate enough to grow old with someone we care about deeply. All of us will die. Those students who take time to appreciate the majesty of this unfolding will be better physicians and more effective healers.

A second theme of the book is the *salience of the sense of self*. Every cell in the body changes with age and time, but a continuing awareness of self, a continuity of personal identity, significantly shapes and influences our behavior.

A third theme is reflected in the title of *Behavior and Medicine*. Morbidity and mortality are profoundly affected by how we behave; what we eat, drink, and smoke; whom we choose as our sexual partners; how often we exercise; and whether we take medicines as prescribed. Most people are aware of the factors affecting their health and yet continue to engage in maladaptive and harmful behavior. Only the most naive health-care provider sees his or her job as simply telling patients how they *should* behave.

A fourth theme, reflected especially in the section of the book dealing with health care policy, is that the *U. S. health-care system is inefficient, inequitable, and inadequate*. As practitioners, we have witnessed first hand how the corporatization of health care and the rise of for-profit medicine has changed the way health care is delivered and financed in the United States. I am ashamed to live in a wealthy country that stands alone among developed nations in not providing health care for all of her citizens; however, we are
encouraged that as this book goes to press, the United States appears to be on the cusp of genuine health care reform.

A final theme of the book is the brevity of life and the certainty of death. The art and poems that illustrate every chapter in the book often portray scenes or descriptions of death. Paradoxically, awareness and acceptance of death can make life richer, fuller, and more meaningful.

It has been profoundly rewarding for us to have a role in the education of several thousand medical students. We hope we have affected their lives; they have clearly shaped ours.

Danny Wedding
San Francisco, CA

Margaret L. Stuber
Los Angeles, CA

ACKNOWLEDGMENTS

One of the pleasures in editing a book is the brief opportunity to thank the many people who contribute to it.

We especially appreciate the chapter authors who were patient with our frequent queries and multiple revisions of their work. Every contributor is a seasoned medical educator, and all are prominent authorities in their respective fields.

The book continues to reflect the values and priorities set by the book’s original advisory board. The members of the advisory board and their original university affiliations were John E. Carr, PhD (University of Washington), Ivan N. Mensh, PhD (University of California at Los Angeles), Sidney A. Orgel, PhD (SUNY, Health Sciences Center at Syracuse), Edward P. Sheridan, PhD (Northwestern University), James M. Turnbull, MD (East Tennessee University), and Stuart C. Yudofsky, MD (University of Chicago).

We benefited tremendously from comments made by our colleagues in the Association of Directors of Medical School Education in Psychiatry (ADMSEP), the Association of Psychologists in Academic Health Centers (APAHC), and the Association for the Behavioral Sciences and Medical Education (ABSAME). Many of these individuals use Behavior and Medicine as a text, and a significant number are chapter authors in the current edition. These colleagues made dozens of helpful suggestions that have been incorporated in this new edition.

Rob Dimbleby, our editor at Hogrefe Publishing, has become a wonderful friend and valued collaborator. We truly appreciate his support, good judgment, clear thinking, and consistent good humor.

Vicki Eichhorn did more than anyone else to help with the fifth edition. She is an extraordinary assistant, and Danny Wedding would not be half as productive without her. We especially appreciate the extra efforts she took to ensure that we met the production deadlines set by Hogrefe. Vicki lead a small army of support staff at the Missouri Institute of Mental Health (MIMH) who cheerfully pitched in with the numerous administrative tasks associated with publication of the new edition. We also gratefully acknowledge the cheerful and meticulous contributions of Marleen Castaneda and Debra Seacord in the preparation of the final version of this edition, without whom Margaret Stuber would be hopelessly disorganized.

Danny Wedding
dwedding@alliant.edu

Margaret Stuber
mstuber@mednet.ucla.edu
Contributors

Adam Aréchiga, PsyD, DrPH, CHES, CNS
Assistant Professor
Department of Psychology
Loma Linda University
Loma Linda, CA

Debra Bendell Estroff, PhD
Professor
Fielding Graduate University
Clinical Professor
David Geffen School of Medicine at UCLA
Los Angeles, CA

Jonathan Bergman, MD
Department of Urology
David Geffen School of Medicine at UCLA
Los Angeles, CA

Pilar Bernal, MD
Child and Adolescent Psychiatrist
Kaiser Permanente
Adjunct Clinical Associate Professor
Department of Psychiatry
Stanford University
Palo Alto, CA

Sarah J. Breier, PhD, RN
Associate Director
MU Center for Health Ethics
Adjunct Assistant Professor of Nursing
University of Missouri
Columbia, MO

Howard Brody, MD, PhD
John P. McGovern Centennial Chair in Family Medicine
Director, Institute for the Medical Humanities
University of Texas Medical Branch
Galveston, TX

George R. Brown, MD
Professor of Psychiatry, Chief of Psychiatry
James H. Quillen VA Medical Center
Professor and Associate Chairman
Department of Psychiatry
East Tennessee State University
Johnson City, TN

Brenda Bursch, PhD
Professor of Clinical Psychiatry & Biobehavioral Sciences, and Pediatrics
Clinical Director, Pediatric Psychiatry Consultation-Liaison Service
Semel Institute for Neuroscience and Human Behavior
David Geffen School of Medicine at UCLA
Los Angeles, CA

Salvador Ceniceros, MD
Private practice
Plymouth, IN

Steven Cody, PhD
Professor
Department of Psychiatry & Behavioral Medicine
Joan C. Edwards School of Medicine
Marshall University
Huntington, WV

Randall Espinoza, MD, MPH
Clinical Professor
Department of Psychiatry and Biobehavioral Sciences
David Geffen School of Medicine at UCLA
Director, Geriatric Psychiatry Fellowship Training Program
Medical Director, ECT Program
Associate Director, UCLA Center on Aging
Los Angeles, CA

Beverly J. Field, PhD
Assistant Professor
Departments of Anesthesiology and Psychiatry
Washington University School of Medicine
Division of Pain Management
St. Louis, MO

Timothy W. Fong, MD
Assistant Clinical Professor of Psychiatry
Co-Director, UCLA Gambling Studies Program
Director, UCLA Addiction Psychiatry Fellowship and Clinic
Semel Institute for Neuroscience and Human Behavior at UCLA
Los Angeles, CA
Kenneth E. Freedland, PhD
Professor of Psychiatry
School of Medicine
Washington University
Saint Louis, MO

Mary L. Hardy, MD
Medical Director
Simms/Mann-UCLA Center for Integrative Oncology
Jonsson Comprehensive Cancer Center
David Geffen School of Medicine at UCLA
Los Angeles, CA

Donald M. Hilty, MD
Director, Rural Program in Medical Education
Professor and Vice-Chair of Faculty Development
Department of Psychiatry and Behavioral Sciences
University of California, Davis
Sacramento, CA

Ka-Kit Hui, MD, FACP
Professor and Director
UCLA Center for East-West Medicine
Department of Medicine
David Geffen School of Medicine at UCLA
Los Angeles, CA

Peter Kunstadter, PhD
Senior Research Associate
Program for HIV Prevention and Treatment (PHPT)
Chiang Mai, Thailand

Joseph D. LaBarbera, PhD
Associate Professor
Department of Psychiatry
Vanderbilt University
School of Medicine
Nashville, TN

Russell F. Lim, MD
Clinical Professor
Director of Diversity Education and Training
Department of Psychiatry and Behavioral Sciences
University of California, Davis
School of Medicine
Davis, CA

John C. Linton, PhD, ABPP
Professor and Vice-Chair
Department of Behavioral Medicine
West Virginia University School of Medicine
Charleston, WV

William R. Lovallo, PhD
Professor of Psychiatry and Behavioral Sciences
University of Oklahoma Health Sciences Center
Director, Behavioral Sciences Laboratories
VA Medical Center
Oklahoma City, OK

Francis G. Lu, MD
Luke & Grace Kim Endowed Professor in Cultural Psychiatry
Director of Cultural Psychiatry
Associate Director of Residency Training
Department of Psychiatry & Behavioral Sciences
UC Davis Health System
Sacramento, CA

Gregory Makoul, PhD
Chief Academic Officer
Senior Vice President for Innovation and Quality Integration
Saint Francis Hospital and Medical Center
Professor of Medicine
University of Connecticut School of Medicine
Farmington, CT

James Randy Mervis, MD
Clinical Professor of Psychiatry and Biobehavioral Sciences
David Geffen School of Medicine at UCLA
Chief, Geropsychiatry Consultation Services
Greater Los Angeles Veterans Affairs Health System, Sepulveda Campus
Sepulveda, CA

Todd E. Peters, MD
Fellow in Child and Adolescent Psychiatry
Alpert Medical School of Brown University
Bradley Hospital
East Providence, RI

Jeannine Rahimian, MD, MBA
Assistant Clinical Professor
Department of Obstetrics and Gynecology
David Geffen School of Medicine at UCLA
Los Angeles, CA

John E. Ruark, MD, FACP
Adjunct Clinical Associate Professor of Psychiatry
Stanford University School of Medicine
Stanford, CA
Contributors

Steven C. Schlozman, MD
Co-Director, Medical Student Education in Psychiatry,
Harvard Medical School
Associate Director, Child and Adolescent Psychiatry Residency,
MGH/McLean Program in Child Psychiatry
Staff Child Psychiatrist, Massachusetts General Hospital
Assistant Professor of Psychiatry, Harvard Medical School
Lecturer in Education, Harvard Graduate School of Education
Cambridge, MA

Adit V. Shah
Research Assistant
Mindsight Institute
Los Angeles, CA

Daniel J. Siegel, MD
Clinical Professor
UCLA School of Medicine
Co-Director, Mindful Awareness Research Center
Psychiatry and Biobehavioral Sciences
Semel Institute for Neuroscience and Human Behavior
Los Angeles, CA

Madeleine W. Siegel
Research Assistant
Mindsight Institute
Los Angeles, CA

David M. Snyder, MD, FAAP
Medical Director, Assessment Center for Children
Exceptional Parents Unlimited, Fresno, CA
Associate Clinical Professor, Department of Pediatrics
UCSF School of Medicine
Fresno, CA

Denise Stephens, MA, LMFT
Rater Manager
CNS Network, Inc.
Garden Grove, CA

Carl D. Stevens, MD, MPH
Clinical Professor of Medicine
Director of Curriculum Development
Office of the Dean, Division of Educational Development and Research
David Geffen School of Medicine at UCLA
Los Angeles, CA

Margaret L. Stuber, MD
Jane and Marc Nathanson Professor of Psychiatry
Semel Institute for Neuroscience and Human Behavior
David Geffen School of Medicine at UCLA
Los Angeles, CA

Robert A. Swarm, MD
Chief, Division of Pain Management
Professor of Anesthesiology
Washington University School of Medicine
St. Louis, MO

Harsh K. Trivedi, MD
Executive Medical Director and Chief-of-Staff
Vanderbilt Psychiatric Hospital
Associate Professor of Psychiatry
Vanderbilt Medical School
Nashville, TN

Danny Wedding, PhD, MPH
Associate Dean and Professor of Psychology
California School of Professional Psychology
Alliant International University
San Francisco, CA

Peter B. Zeldow
Private practice
Chicago, IL
Poetry Credits

The following poems are reproduced with permission of the respective rights holders.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Poem</th>
<th>Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 3 (p. 33)</td>
<td>Only Stars by Duncan Darbishire</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 3 (p. 40)</td>
<td>Emily Drowned by Duncan Darbishire</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 4 (p. 51)</td>
<td>The Discovery of Sex by Debra Spencer</td>
<td>From Pomegranate. © Hummingbird Press. Reprinted by permission.</td>
</tr>
<tr>
<td>Chapter 5 (p. 64)</td>
<td>The Pleasures of Old Age by Michael Blumenthal</td>
<td>From Against Romance by Michael Blumenthal, copyright © 1987 by Michael Blumenthal. Used by permission of Viking Penguin, a division of Penguin Group (USA) Inc.</td>
</tr>
<tr>
<td>Chapter 7 (p. 96)</td>
<td>The Knitted Glove by Jack Coulehan</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 9 (p. 126)</td>
<td>Two Suffering Men by Eugene Hirsch</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 12 (p. 157)</td>
<td>Unrequited Love by Elizabeth Bartlett</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 14 (p. 181)</td>
<td>Peau d’Orange by Marcia Lynch</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 15 (p. 193)</td>
<td>Patients by U. A. Fanthorpe</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 16 (p. 201)</td>
<td>But Her Eyes Spoke Another Language by Duncan Darbishire</td>
<td>Used with permission.</td>
</tr>
<tr>
<td>Chapter 21 (p. 260)</td>
<td>Rock of Ages by Jack Coulehan</td>
<td>Used with permission.</td>
</tr>
</tbody>
</table>
Contents

Foreword by Michael Wilkes .. V
Foreword by Frederick S. Sierles .. VII
Preface .. IX
Acknowledgments .. X
Contributors ... XI
Poetry Credits .. XIV

PART 1: MIND-BODY INTERACTIONS IN HEALTH AND DISEASE

1. Brain, Mind, and Behavior
 Daniel J. Siegel, Madeleine W. Siegel, & Adit V. Shah 3

2. Families, Relationships, and Health
 Margaret L. Stuber .. 23

3. Birth, Childhood, and Adolescence
 Harsh K. Trivedi & Todd E. Peters .. 31

4. Early Adulthood and the Middle Years
 Joseph D. LaBarbera & Danny Wedding 47

5. Old Age
 Randall Espinoza & James Randy Mervis 57

6. Death, Dying, and Grief
 John E. Ruark .. 77

7. Chronic Pain
 Beverly J. Field, Robert A. Swarm, & Kenneth E. Freedland 91

PART 2: PATIENT BEHAVIOR

8. Stress and Illness
 William R. Lovallo & Margaret L. Stuber 107

9. Addictions
 Timothy W. Fong .. 117

10. Psychodynamic Approaches to Human Behavior
 Peter B. Zeldow .. 133

11. Facilitating Health Behavior Change
 Adam Aréchiga .. 145
Contents

12. Human Sexuality
Jeannine Rahimian, Jonathan Bergman, George R. Brown, & Salvador Ceniceros

PART 3: THE PHYSICIAN'S ROLE

13. Medical Student and Physician Well-Being
Margaret L. Stuber

14. Medical Ethics
Sarah J. Breier

PART 4: PHYSICIAN-PATIENT INTERACTIONS

15. The Physician-Patient Relationship
Howard Brody

16. Communicating with Patients
Gregory Makoul & Peter B. Zeldow

17. Diagnostic Reasoning
Carl D. Stevens

18. Patient Assessment
John C. Linton & Steve Cody

19. Recognizing and Treating Psychopathology in Primary Care
Debra Bendell Estroff, Denise Stephens, & Pilar Bernal

20. Managing Difficult Patients
Brenda Bursch

21. The Humanities and the Practice of Medicine
Steven C. Schlozman

PART 5: SOCIAL AND CULTURAL ISSUES IN HEALTH CARE

22. Culturally Competent Health Care
David M. Snyder & Peter Kunstadter

23. Complementary, Alternative, and Integrative Medicine
Mary L. Hardy, Margaret L. Stuber, & Ka-Kit Hui

24. The Impact of Social Inequalities on Health Care
Russell F. Lim, Francis G. Lu, & Donald M. Hilty

25. Health Services in the United States
Arleen Leibowitz

PART 6: APPENDICES

USMLE Review Questions

USMLE Review Answers

Index
Part 1
Mind-Body Interactions in Health and Disease
What does a professional in the art of healing need to know about the science of the brain and the nature of the mind? How does knowledge about the brain and its influence on behavior enrich clinical practice? Why should a practitioner who works to help alleviate the suffering of others invest the time and energy into understanding the brain and behavior when there are so many other details to learn about illness and treatment? The simple answer to each of these questions is that in order to understand how to treat people, we need to understand how patients experience their illness, how they perceive their encounter with you, and their behaviors that may support a path toward healing. At the heart of a person’s inner experience and outer behavior is the mind.

One dictionary definition states that the mind is “considered as a subjectively perceived, functional entity, based ultimately upon physical processes but with complex processes of its own: it governs the total organism and its interaction with the environment.” The mind is often viewed as synonymous with the psyche, the soul, the spirit, and the intellect. From this perspective, the mind is not distinguished from the “heart,” and thoughts are not separated from feelings. In this chapter we will explore the ways in which we can view the mind as the core of a person’s evolving identity. The ways in which that person responds in an interview, a diagnostic test, or a discussion about potential illnesses, and his or her specific attitude and approach to treatment are each a function of that person’s mind.

One aspect of the mind is a process that regulates the flow of energy and information. Your mind is taking in the information of these words at the moment you read them. You are investing energy in the reading of this sentence, and the layers of information processing beneath your awareness are making linkages to ideas and facts you’ve thought of in the past. In fact, most of the flow of energy and information—the essence of our minds—is beneath our awareness. Mental activity, such as feeling and thinking, can enter conscious awareness and subsequently be shared within our own conscious mind and with other people. When the important feelings and thoughts in our nonconscious mental lives remain out of the spotlight of conscious attention, they can still influence our decisions, reactions, and behaviors. This is true whether we are professionals or patients.

In this chapter we’ll be offering you a way to think about the mind at the center of human experience. The benefit for you in reading through this chapter will be that you’ll gain a new perspective into the minds of others, and perhaps even your own. This skill can be called “mind-sight” and permits us to see and shape the internal world. Research has now clearly shown that knowing your own mind can help you in many important ways in your work as a clinician. Because of the necessary brevity of this discussion, only major concepts will be highlighted. If you are interested in further reading you may find the works cited in the Suggested Readings to be an excellent way to learn more about this fascinating topic.
You can see from the definition given above that the mind has the interesting quality of being “based ultimately upon physical processes” but that it also has “complex processes of its own.” The mind is a subjective entity, meaning that we each experience within us the process of mind that may not be wholly available to objective, and especially quantitative, analysis. The reason we need to pay attention to subjective mental life is that objective research shows us that physical health is directly related to mental well-being. The subjective nature of the mind and the mind’s well-being are, in fact, some of the most important contributors to physiological well-being. For example, studies have quantitatively proven that how patients focus their attention during a medical treatment, such as “light therapy” for psoriasis, has a profound impact on the outcome of medical interventions. People who practice a form of attending to the present moment, called mindful awareness, have been shown to have improved immune function. Physicians trained in mindful awareness also have diminished stress from their intense medical practices. The focus of attention literally means how you regulate the flow of information—i.e., how you regulate your mind. Our mental life directly affects medical states—such as those of the heart, immune system, and lungs.

You may be wondering how a “subjective entity” such as the mind can affect the physical processes of the cardiovascular system or the activity of the immune system. One way to explore this relationship between mental function and physiology is to take a look at the connection between the information and energy flow of the mind and the physical activity of the brain.

Many disciplines of science are concerned with understanding the mind. One of those fields is the fascinating area of neuroscience, the study of the structure and function of the nervous system. Branches of this field study specific aspects of neural functioning, such as how the activity of the brain is associated with thinking, emotion, attention, social relationships, memory, and even moral decision-making. Taken as a whole, the field of neuroscience has been exploding with new insights into the correlation between the brain’s function and internal mental processes affecting the outward expression of behaviors. The numerous and expanding insights into brain-mind correlations have direct relevance for the clinical practitioner.

Future generations, paying tribute to the medical advances of our time, will say: “Strange that they never seemed to realize that the real causes of ill-health were to be found largely in the mind.”

LORD PLATT
Professor of Medicine, Manchester, UK
British Medical Journal

Neural Activity Correlates with Specific Mental Processes

While science demonstrates correlations between activity in the brain and the subjective experience of the mind we can only say at this point that these are associational findings. In other words, neural activity in one area of the brain at one point in time correlates directly with mental activity of a certain type. Here’s one example: When you look at a picture of, say, the Golden Gate Bridge, we know that the posterior part of your brain, in the occipital lobe of the neocortex, will become active. You may already know that this back part of your brain has been called the visual cortex because of this association. We even know that if you remember the visual scene of the Golden Gate Bridge, that same area of the cortex will be activated. In fact, remembering anything you’ve seen will activate that posterior region.

But here’s a new finding that puts a slight twist on what we would call that area. It’s been known for some time that blind people use the occipital cortex to process what they feel with their fingers, including the raised letters of Braille. Recently a study examined the brain function of people who volunteered to be blindfolded for five days and use only their fingers to feel their way around the controlled environment in which they lived during that period of time. Without the input of their optic nerves during that sightless period, the input from their fingers became dominant in influencing the activity of their occipital lobes, and their occipital lobes were activated whenever they touched something with their fingers.

What does this mean? This study proves that the brain is an ever-changing, dynamic organ that is extremely responsive to experience. Also, as this study reveals, the precious information-processing real estate of the brain is open to “the most competitive bidder.” In the study just described, the now dominant input from the fingers to sense the spatial world came to be “processed” in the occipital lobe. In fact, some researchers have suggested that the visual cortex be renamed the “spatial cortex.” For us, the important issue is that our five senses and where we focus our attention directly shape the neural architecture and function of the brain.

The overly simplistic view that the mind is “just the activity of the brain” can mislead us into reductionistic thinking and unhelpful conclusions. In the example given, our minds can be understood to harness any neural machinery necessary to create a three-dimensional perspective and image of the spatial world. In fact, a range of studies has demonstrated that how we harness the flow of energy and information—how our mind functions with the focus of attention—can directly shape the connections in the brain. Some people even believe that the mind “uses the brain” to create whatever it needs. In this chapter, we embrace this
open dimension of the associational and bi-directional influence of mind-brain relationships.

Mental Experience Occurs As Neurons Become Active

Mental processes occur when neurons fire. Whenever you think of “experience,” try translating that into the idea of “neural firing in the brain.” That is to say, every time you have an experience, there is specific activity occurring in your brain where only certain clusters of neurons are becoming active. The benefit of this thinking is that it helps you understand aspects of how the mind works. The firing of neurons can lead to a cascade of associated firings because the brain is an intricate, interwoven set of web-like neural circuits. Specific regions in the brain are devoted to specific forms of mental processing, such as spatial perception for the occipital regions, as we discussed earlier. Knowing a bit about brain anatomy can therefore inform us about the architecture of our mental lives. The more we can understand the underlying structure and function of our internal, mental lives the more we can understand ourselves and patients. In fact, studies of the doctor-patient relationship reveal that such an understanding of others’ minds, called empathy, is one of the more important factors in determining the extent to which clinicians can help others with their difficulties.

To understand the mind in a deeper way, we are turning toward the brain for scientifically based insights that can build our capacities to be empathically sensitive to the subjective lives of others. Here we are starting with the principle that mental processes emerge as neurons fire in specific areas of the brain. What does “neural firing” really mean? Recall that the basic cell of the nervous system is the neuron. This long, spindly cell reaches out to other neurons to connect at a space called the synapse. Synaptic junctions are generally at the receiving neurons’ cell body or its dendrite. The electrical current, known as an action potential, passing down the length of the neuron, leads to the release of neurotransmitters from the pre-synaptic neuron to influence the firing of the post-synaptic neuron. Ultimately the summation of the excitatory versus inhibitory transmitters at the synaptic cleft will determine if the downstream (post-synaptic) neuron will in turn send an action potential down its membrane to influence further neural firing.

Here are the numbers that illuminate the fascinating complexity of the whole process: The average neuron in your brain is connected directly to about ten thousand other neurons, and the estimated twenty to one hundred billion neurons in your brain allow for trillions of connections in a spider-web of soft neural tissue in your skull. When we add to this the trillions of supportive cells, called glia, that have uncertain but likely contributions to information flow in the brain, then we can see how complex the neural processes are that influence our mental lives.

Neurons That Fire Together, Wire Together

Before this seems too overwhelming, remember that there are several principles that make this intricate anatomy actually quite understandable, interesting, and relevant for clinical practice. One of these is our third general principle: neurons that fire together, wire together. Described long ago, this underlying property of the nervous system has now been explored in great detail. The “linkages” among neurons, the synaptic connections interweaving numerous neurons to one another, is what we mean by the saying that “neurons wire together.” The first part of the principle, “Neurons that fire together,” means that when we have an experience the brain becomes activated in various regions. When neurons are activated at a
given time, the connections among those simultaneously active neurons are strengthened. This is why if you've had an experience (remember, “neural firing patterns activated”) say, of hearing a certain song when you've felt very happy, in the future you are likely to have the same feeling (neural firing of joy) when you hear that same song (neural firing in response to the sounds of the music). This is how learning and memory work. Neurons that fire together at one time are more likely to fire together in the future because the synaptic connections that link them together have become strengthened due to the experience.

In fact, it is these synaptic connections that shape the architecture of the brain, making each of us unique. Even identical twins will have subtle differences between their brains that are created by the unique experiences that shape the synaptic connections that directly influence how the mind emerges from the activity of the brain. Our inner mental life—a life of thoughts, feelings, and memories—is directly shaped by how our neurons connect with one another—which in turn has been directly shaped by our own experiences. In addition, our external behavior is directly shaped by the synaptic connections within our skulls. In short, the brain shapes both our minds and our behavior.

The Mind Can Shape the Connections in the Brain

The fascinating relationship between brain and mind goes even deeper than the one-way street of the brain leading to mental activity and behavioral output. A fourth principle reveals the bi-directionality of mental process and neural firing: the mind shapes the connections in the brain. Recall that an important aspect of the mind is the regulation of energy and information flow. Also consider the fact that the mind has “processes of its own,” beyond the physical processes of the brain from which it emerges. Researchers have clearly established the mind’s power to shape neural firing patterns.

Try this out: think of what you had for dinner last night. Now try to imagine, using visual imagery, what you’ll have for dinner tonight. In this simple exercise, you have chosen (with a little suggestion from these words, but ultimately of your own volition) to use your mind in ways that involve aspects of memory and visualization in your occipital region. Now consider this question: did your mind cause your brain to become active in these areas, or did your brain activate first followed by your mind? The force of mental power to activate the brain gives us a profoundly important insight into how our minds can directly shape the physical state of our bodies. In this exercise, the information flowing from these printed words to your eyes directly influenced your mind—the flow of energy and information within you.

It is helpful in life and in clinical work to realize that a person's “mental will” and “intention” are both mental processes that can shape how neurons fire. In turn, how neurons fire shapes how they alter their connections with each other. As those neural connections change, the patterns of the mind—ways of thinking, feeling, and behaving—can change. In other words, the mind directly shapes the physical properties of the brain which in turn alter how our bodies, including the brain, function. These somatic and neural changes in turn can directly influence how our minds function, and how we feel and how we interact with others. As we'll see, the mind and the brain are profoundly social.

One way of envisioning the connections among mind, brain, and interpersonal relationships is to view them within a triangle of energy and information flow. The mind is the regulation of that flow, the brain is the mechanism shaping that flow, and relationships are how we share energy and information flow with one another.

Consciousness Permits Choice and Change

This raises the fifth and final principle for this section: With consciousness comes the possibility of choice and change. Neural connections in the brain allow for certain patterns of thinking, feeling, and behaving to be enacted. In the course of normal living, these mental activities are often on “automatic pilot,” and are likely shaped largely by the neural connections that then directly influence mental processes. With conscious awareness, however, something new appears to enter this otherwise automatic self-fulfilling brain prophecy. With focal attention—the focusing of awareness onto a process—the power of the mind can be engaged to...
actually alter old habits of behaving, emotionally responding and thinking. With consciousness there is the possibility to “wake up” and change old patterns. Studies reveal how carefully paying attention may even lead to the secretion of neurochemicals that actually promote neuroplasticity—how the brain changes in response to experience. With practice in living intentionally, these new mentally activated neural firings can create the changed neural wiring that will make these new patterns of mind more likely to occur, even automatically. In other words, what initially required deliberate conscious attention to change old patterns can become a new and less energy-consuming set of behaviors in the future. This is the essence of new learning and how it becomes embedded in new synaptic linkages in the brain itself.

EXPERIENCE AND GENES SHAPE THE BRAIN: RELATIONSHIPS, CULTURE AND LIFELONG DEVELOPMENT

As you’ve seen in our earlier discussion, experience not only involves neural firing, but it also shapes neural connections. This may come as a surprise to many who thought that genes solely dictate the structure of the brain. The fact is that both genes and experience shape the brain’s structural properties—the ways that neurons are synaptically connected to each other. About one third of our genes directly determine neural connections, and another one sixth indirectly influence synaptic connections. That’s one half of our genome influencing neural architecture. In the womb, genes play a major role in shaping the basic foundation of the brain. Even after birth, genes continue to influence how our neurons link up to one another. However, both the environment in the womb and our experiences after birth influence the synaptic linkages within our brains. When a baby is born, the distinct neural patterns emerging from these pre-birth influences contribute to what is called our innate temperament. These constitutional patterns of responding and perceiving can make some of us shy and others outgoing. Some may be quite sensitive to stimuli and become overwhelmed easily, while others thrive with intense sounds and sights.

As we grow our temperamental features interact with our experiences in shaping the person that we become—what some call our personality. One of the earliest types of experiences that shape us is our relationship with our caregivers. Known as attachment, these early child-caregiver experiences are thought to directly shape the circuitry of the brain responsible for how a child comes to regulate his emotions, govern his thoughts, and engage with other people. But while early attachment is extremely important, the brain proves to be open to change throughout the lifespan. Understanding the impact of early life experiences on how you grew up has scientifically been proven to be an important aspect of how the mind can “wake up” and not repeat unhelpful learned patterns from the past. These attachment studies resulted in two important findings: (1)
It is never too late to make sense of one's early life experiences and become the person one may truly want to be and (2) without such understanding, individuals often live on "automatic pilot" and repeat sub-optimal ways of relating to others within their personal and professional lives.

Given that the brain continues to make new connections and possibly even grow new neurons throughout its lifespan, each of us can use the power of our mind to alter the connections in our brains. The experiences we continue to have within the specific culture in which we live can continue to shape how our brains are changing in response to experience. Becoming aware of the impact of these cultural and personal experiences on our continually changing brains can help us understand the ways in which our external environment shapes our internal world.

Becoming aware of ourselves and waking up means becoming conscious of the power of the mind to make choices that may have previously been considered impossible. Neither our genes nor our early life experiences permanently restrict our minds. The key for clinicians is learning how to teach patients scientifically grounded facts about how central the mind is in shaping its own pathway.

CENTRAL ORGANIZING PRINCIPLES

Self-Regulation

These are powerful ideas that are not easily taken in and understood by either professionals or patients. Fortunately there are a few central principles that can help organize these ideas about brain, mind, behavior, experience, and physiology. One of these principles has to do with **self-regulation**. In physiology we learn about the process of **homeostasis**, how the body maintains its various systems in balance for optimal functioning. Whether it is the renal system, the cardiovascular system, or the respiratory system, we can examine how homeostasis is maintained to achieve a state of health and well-being. Whenever a system is stressed, homeostasis is challenged. Some stressors lead to high-energy processes that strive to regain homeostasis; other stressors can lead to overwhelming imbalance and devastation that can cause a massive shutting down of normal functioning and even death without intensive intervention.

The brain also functions as a self-regulatory system that achieves balance by using a number of domains of functioning. In the simplest terms, the brain moves toward neural homeostasis by alternately using internal and external factors. Internal components of the nervous system would include the synaptic connections in the brain itself, or the level of firing in particular regions. External factors of the nervous system would involve input from the environment, such as altering the signals being received from other people. For example, a newborn who is overwhelmed with stimuli from the external environment will fall asleep in order to maintain balance. In other words, the mind can utilize its different internal and interpersonal capacities to alter its functioning in order to maintain equilibrium in the long-run. Homeostasis of the body parallels equilibrium of the mind. The concept of **self-regulation** implies that this equilibrium is achieved by altering internal elements, such as how you think or feel, and external interpersonal elements, such as the people you communicate with during a stressful period. Self-regulation in our lives entails modifying both individual and relational elements to achieve equilibrium in mind, brain, and relationships.

Out of the Balanced Flow: Chaos or Rigidity

Our brain achieves balance by directing the flow of energy and information within its neural firing patterns to optimize functioning. One way to describe this neural equilibrium is to use the metaphor of a river. Each bank represents the extreme poles of brain balance: one bank is a state of chaos, the other bank is a state of rigidity. Down the middle between rigidity and chaos flows the river of well-being which can be defined as harmony. In this harmonious state, one is flexible, adaptive, coherent, energized, and stable. Using the acronym FACES can be used to remember these five qualities of neural equilibrium and mental well-being.

The neurons encased in the skull achieve equilibrium through a process called **neural integration**. Integration means the linking together of differentiated components into a functional whole. Neural integration is what the brain naturally strives to do. When a brain is integrated, it is able to achieve the most flexible, adaptive, and stable states of functioning, the "FACES" flow of the mind and brain that occurs when information and energy are flowing in a harmonious manner. When the brain cannot achieve such integration, a person can experience states of either chaos or rigidity. The brain may become inflexible, maladaptive, incoherent, depleted of energy, and unstable. You may notice such a stressed neural or mental system in yourself or others by observing how internal mental processes, such as thoughts or feelings, or external behaviors, such as reactions to others, occur in response to the extremes of rigidity or of chaos.

As a general starting point, this central organizing principle of self-regulation emerging from the brain's natural drive toward integration helps us see when the everyday challenges of life become overwhelming and when stress has produced a mental pathway that is rigid or chaotic. As a professional, the river metaphor can help you understand how you, your colleagues, or your patients may be adapting to life's daily challenges to neural homeostasis and mental well-being.
THE BRAIN IN THE PALM OF YOUR HAND

We’ve now seen that behavior emanates from the neural firing patterns of the brain and other areas of the nervous system in creating the mind. Mental processes emerge from the firing patterns of particular clusters of neurons. Knowing a bit about these neural regions can be helpful in getting a sense of the relationships between brain and behavior. We’ve explored the notion that mental well-being and neural equilibrium flow like a harmonious, coherent river with rigidity and chaos on either side. In this flow, however, there are twists and turns as the body attempts to integrate its differentiated components to achieve these pathways. As we explore the different regions of the brain, keep in mind that this neural integration involves how differentiated, specialized areas are brought together as a functional whole. This is what neural integration is—the ways that the brain links disparate areas together as a functional whole. When integration is achieved, equilibrium is possible and that state of a coherent and harmonious mind can occur. When integration is impaired, the mind moves into rigid or chaotic states that are not adaptive.

The Logical Left and Nonverbal Right Hemisphere

One way that we can see the nature of how the overall mental system functions is through examining the emotional state of a person. Emotions involve subjective internal feelings, physiological changes in the body, and often, but not always, nonverbal communication. Nonverbal expressions include eye contact, facial expressions, tone of voice, gestures, posture, timing, and intensity of responses. You can remember these seven nonverbal signals by pointing to your eyes, circling your face, pointing to your voice box, gesturing with your hands, pointing to your body, and then pointing to your watch. Interestingly, these nonverbal expressions are both sent and received by the nonverbal right hemisphere of your brain. In contrast, words are most often sent and received by your left hemisphere, the seat of logic and linear thinking. The right hemisphere, however, appears to be more closely linked to our emotional limbic areas that register autobiographical memory and receive an integrated map of the body, including input from the heart and intestines.

The Subcortical Brainstem and Limbic Regions

In addition to having two halves of the brain that are separated in the cortex and the limbic areas but are connected via the corpus callosum, we also have other regions worthy of knowing a bit about. If you put your thumb in the middle of your palm and fold your fingers over the top, you’ll have a pretty handy model of the brain and a useful way to visualize some major brain regions. Your wrist is the representation of the spinal cord coming up your back and connecting to the brain at the base of the skull. The first of three major areas we’ll be examining in this model is the brainstem, located in the middle of the palm of your hand. The brainstem carries out basic physiological regulation functions, such as heart rhythms and sleep-wake cycles. The brainstem is also responsible for the survival reflexes of fight, flight or freeze in reaction to threat. The next major region is represented by your thumb and is the limbic area. (Ideally we’d have two thumbs, a left and right limbic area.) In this region are the areas of the brain responsible for generating emotion, motivation, the appraisal of the meaning of experiences, and attachment relationships. Evolved in our mammalian heritage, these limbic areas include the amygdala, responsible for the fear response, and the hippocampus, which is involved in certain forms of memory.

The Cortex

If you fold your fingers over the limbic thumb area, you’ll find the location of the cortex, which also developed during our journey into mammalian life. This “outer bark” of the brain is in general responsible for complex representations, such as perception and thinking. In general, the posterior lobes of the cortex carry out perception. The frontal lobes, located from the second-to-last knuckles to your fingertips, represent the regions responsible for motor action and planning as well as more complex thinking and reasoning. The front most part of this area is represented from your last knuckles down to your fingernails and is called the prefrontal cortex. As you’ll see, the prefrontal cortex is important for many functions relevant for understanding the connections among mind, brain, and behavior.

The Prefrontal Cortex

The prefrontal cortex can be divided into two areas: a side part and a middle part. Naturally the whole brain could be divided ultimately into at least one hundred billion parts, the neurons in the brain. But the brain’s numerous neurons are clustered into groupings that work together as differentiated regions that carry out specialized functions. As we’ve seen, the brain strives toward integration of these differentiated areas. The prefrontal regions’ anatomic location actually makes them quite important in connecting separate areas to each other. The side part, called the dorsal lateral
prefrontal cortex, is important in creating working memory. Acting like the “chalkboard of the mind,” this side region links its activity with other activated areas to create the experience of conscious awareness. When we say “put [something] in the front of your mind,” we are inviting the dorsal lateral prefrontal cortex to link its activity with whatever that something is, whether an abstract thought to a bodily sensation.

The middle part of the prefrontal cortex is also in a unique position to integrate widely separated areas into a functional whole. Take a look at where the middle two fingernail regions rest in your hand-model of the brain. Notice how this middle prefrontal cortex area “touches everything” just as this area of the brain links the brainstem, limbic areas, and cortex into a functional whole. As we’ll see below, this area also links the input of the body and the input from the social world, binding together somatic, cerebral and social functions into an integrated process.

The middle part of the prefrontal cortex consists of the regions called the orbitofrontal cortex, located just behind the eyes, the anterior cingulate, just behind it, and the ventrolateral and medial prefrontal cortex behind the forehead to the side and front. Together, these four regions carry out very important integrative functions. Here is a list of nine functions mediated by the middle prefrontal regions extracted from the research literature on the human brain:

1. Bodily Regulation: This area regulates the two branches of the autonomic nervous system, and it keeps the sympathetic (“accelerator”) and parasympathetic (“brakes”) branches in balance.
2. Attuned Communication: When we lock eyes with someone and align our own state of mind with another person, this resonant state involves the activation of the middle prefrontal cortex.
3. Emotional Balance: The lower limbic areas generating emotion are able to achieve enough arousal for creating meaning in life but are kept from becoming excessively aroused and disabling a person’s information processing. This is achieved by the inhibitory action of the fibers from the middle prefrontal regions that extend to the limbic areas such as the amygdala.
4. Response Flexibility: Our ability to take in multiple channels of stimuli and pause before acting long enough to

CASE EXAMPLE: Neurobiology and Personality

Accounts of a documented brain injury suffered by one Phineas Gage in 1848 when an iron pole was accidentally blasted through his head, irrevocably damaging his prefrontal and orbitofrontal cortex, revealed how the prefrontal regions of the brain play a crucial role in mediating our personality (he miraculously survived this massive injury, but his personality altered). This middle prefrontal region, as we’ve seen above, also plays an essential role in facilitating our healthy relationships with others—and even with ourselves—as the following case reveals.

Barbara was a forty-year old mother of three who sustained substantial trauma to the area just behind her forehead when her car was hit head-on by a drunk driver; the lesions followed the upper curve of her car’s steering wheel. This area is a profoundly integrative region of the brain, linking widely disparate brain regions to each other. The important functions of the middle prefrontal area discussed above—from attuning to others and balancing emotions, having insight and acting morally—were compromised following the accident, subsequent brain surgery, and rehabilitation.

Cortical activity creates neural firing patterns that enable us to form representations—or “maps”—of various aspects of our world. Maps serve to create an image in our minds. For example, when we take in the light reflected from a bird sitting in a tree, our eyes send signals back to our occipital cortex, and the neurons there fire in certain patterns that permit us to have the visual picture of the bird.

The prefrontal cortex, the most damaged part of the frontal lobe of Barbara’s brain, makes complex representations that permit us to create concepts in the present, think of experiences in the past, and plan and make images about the future. The prefrontal cortex is also responsible for the neural representations that enable us to make images of the subjective mental life of others and of ourselves. These representations of our mental world can be called “mindsight maps.”

After Barbara emerged from her coma, her impairments seemed to result in a new personality. Some of her habits, like what she liked to eat and how she would brush her teeth, remained the same. There was nothing significantly changed in how her brain mapped out these basic behavioral functions. But the ways in which she thought, felt, behaved, and interacted with others were profoundly altered. Like Phineas Gage, Barbara’s personality was changed forever.

Above all, Barbara seemed to have lost the very map-making ability that would enable her to honor the reality and importance of her own or others’ subjective inner lives. Her mindsight maps were no longer forming amidst the now jumbled middle prefrontal circuitry upon which they depended for their creation. This middle prefrontal trauma had also disrupted communication between Barbara and her family—she could neither send nor receive the connecting signals enabling her to join minds with the people she had loved most. Barbara had lost the vital capacity for mindsight that would allow her family members to “feel felt” by her, to feel that their minds were inside of Barbara’s own mind. While she could still see the objective, outside world well, the inner world of the mind had disappeared from her sense of what existed.

These prefrontal areas damaged after Barbara’s accident play a vital role in integrating the various regions of the brain. This important function of neural integration brings together the processing of emotional, social, and bodily inputs in the creation of patterns of perception, thinking, and behavior that we call personality. Neural integration is also what enables us to see one another’s minds—and to connect with one another in empathic, caring relationships.
choose from a range of adaptive responses is mediated by this region.

5. Extinction of Fear: Recent studies have revealed that the middle prefrontal region sends GABA (the inhibitory neurotransmitter gamma amino butyric acid) fibers downward to the fear-generating amygdala to inhibit the amygdala generated fear response.

6. Empathy: Putting yourself in the mental perspective of another person, seeing through another’s eyes, involves middle prefrontal activity.

7. Insight: Having the capacity to reflect on your past, link it to the present, and anticipate and plan for the future are middle prefrontal activities.

8. Morality: Studies of individuals with damage to the middle prefrontal region reveal that moral reasoning appears to be processed via the integrative circuitry of this region. When the prefrontal cortex is damaged, people may become amoral, no longer able to consider the larger good for others when thinking through a problem.

9. Intuition: The input of our body’s organs, such as the physiological state of the intestines and heart, find their way to the middle prefrontal regions. These organs appear to have neural processors surrounding them that act as a kind of “peripheral brain” in which our gut and heart’s responses actually process information about the social and personal worlds. Intuition may involve paying attention to these important nonverbal sources of knowledge.

How Attunement Promotes Neural Integration and Well-Being

The nine functions carried out via the integrative fibers of the middle prefrontal regions reveal that our brains are involved in linking together bodily, social, and mental processes into one set of integrated functions. Research suggests that secure parent-child relationships early in life may promote at least the first eight of these listed middle prefrontal functions. Mindful awareness practices, such as mindfulness meditation, also promote many of these same integrative functions. What might loving relationships between parent and child and mindful awareness share in common? With mindful awareness what is created is a state of attending to moment-by-moment experience without being swept up by judgments and reactivity. This is a form of “interpersonal attunement.” With empathic relationships, a parallel kind of acceptance but this time directed toward another person, just as he or she is, is part of the “interpersonal attunement” at the heart of secure attachment and healthy relationships in general. A range of research suggests that these inner and interpersonal forms of attunement promote the growth of the integrative fibers of the brain—especially in the prefrontal region. When working with patients, empathy and compassion will help promote this integrative sense of harmony and well-being. And, when relating to yourself as a physician, learning to be mindful has been shown to help prevent burnout, reduce stress, and increase empathy for patients, and self-compassion. Practicing mindfulness techniques can help keep your self-regulating and integrating prefrontal circuits well functioning.

BOX 1.1 The Importance of Self-Care for Primary-Care Physicians

A recent study demonstrated the benefits of mindfulness for primary care physicians. A continuing medical education course was provided for clinicians to improve well-being and decrease burnout. During a period of two months, practicing physicians met once a week to learn mindfulness meditation, reflective communication, and self-awareness skills. During these sessions, the practicing doctors met in small groups to discuss their thoughts and feelings regarding patient care and to reflect on the value of being a clinician. After a 10-month follow-up phase, the clinicians experienced improved attitudes toward their patients and an enhanced sense of well-being.

Learning the skills of mindful awareness and the importance of reflection can save clinicians from disabling stress and emotional burnout. Remembering the personal meaning of your clinical profession can also help you maintain a sense of purpose and value in your work. Before caring for others, one must first learn to care for oneself. This study demonstrates the importance of internal attunement, self-awareness, and self-care for the health of practicing physicians.

Repairing Ruptures: The High Road and the Low Road

As the case of Barbara above reveals, neurological damage to the middle prefrontal region may result in impairment of a range of the functions. In addition, it appears that under conditions of emotional stress many people may be at risk of moving from this integrated, “higher mode” or high road of functioning in which these nine processes are intact to a nonintegrated, “lower mode” or low road of functioning in which some or all of these processes may be temporarily impaired. You can picture this movement from the high road to the low road in your hand model by taking your hand-brain and lifting up your cortical fingers to expose the thumb-limbic areas. With intense emotion it may be possible to flood the middle prefrontal cortex and temporarily disable the integrative fibers of this region from performing their important functions. In such a lower mode of processing, the brain produces a rigid or chaotic state of mind. This temporary “flipping your lid” can in-
volve any or all of the following: loss of regulation of bodily functions, disconnection from others, emotional imbalance causing rigid shutting down or chaotic flooding, inflexible knee-jerk reflexes instead of adaptive thoughtful responses, loss of empathy for others, lack of insight, return of deep fears, being out of touch with intuition, and amoral behavior.

Temporarily losing our coherent minds when our brains become nonintegrated can be both confusing and frightening to ourselves and to those around us. This can be seen in how we “flip our lids” under conditions of stress and lose the integrative balance and coordination of our middle prefrontal region. Understanding the emotional triggers that activate such low road states can be an important step in making sense of such sudden shifts in an otherwise well-functioning individual. Whether it happens in yourself, your colleagues, or your patients, seeing the human aspect of such common lower mode activities can be an important step in bringing compassion to the experience. Each of us can lose our minds; what is important is to make the repair with others that is necessary to reestablish an open, trusting connection. Such repair is one of the key ingredients to healthy relationships of all sorts, from friendships or child-parent attachments to the relationship between patient and doctor.

In addition to repairing relationships that may have been affected by low road experiences, it is also important to try to understand the triggers that may have caused them in the first place. Examining the experiences of the person in the hours and days before the event may be important to establish a background state of mind of the person. Trying to determine the trigger is akin to finding the “straw that broke the camel’s back,” the final piece of an emotional puzzle that destroyed the middle prefrontal area’s ability to cope. Often, triggers are related to the context of what was occurring in a person’s life and relationships. Feeling frustrated, misunderstood, helpless, threatened or ignored are common emotional states that may trigger low road states. When we are reactive, we may move rapidly into a fight-flight-freeze mode mediated by our brainstem’s survival reflexes. Even as physicians we may be prone to entering such states under stress. Sometimes these emotional states are related to things from the past stored in various forms of memory. We’ll turn now to learning about how the brain remembers to understand more about brain-behavior relationships.

THE NATURE OF MEMORY
The Brain is an Association Organ

Memory is the way in which an experience changes the probability of how our brains function in the future. There are many layers of memory that are important for a healthcare professional to understand in order to help patients with their present difficulties. Memory will not only shape how a patient comes to you with their current problems but it will also influence how they take what you offer them and use it in the future. In many ways, memory links a person’s past, present, and future together into one integrated process. Your role as a health care provider will be more effective if you understand how to help your patients